PDA

View Full Version : LaTex guide

sat math
06-29-2013, 01:51 PM
SATmath4u.com is the first forum introducing the addition of LaTeX mathematical typesetting for SAT math test.
LaTeX is a professional-grade general typesetting system that centers around very pleasing mathematical presentation. Mathematical expressions are written in a markup style somewhat similar to HTML.
You may include LaTeX graphics in any post here on SATmath4u.com
To include a LaTeX graphic, simply include your LaTeX code within the tags [ /tex]. without spaces.
Or by using the rightmost button in editing bar and then use the math symbols bellow the post area as shown in the following image.

38

Basic Guidelines
Lines and Text. \\ starts a new line, \ includes a space, \mbox{...} includes text

Sub- and Superscripts.
[tex]x^3[ /tex] produces [tex]x^3 while
[tex]x_{2n}[ /tex] produces x_{2n}
Here is another example:
[tex]\log_{5} 125=3[ /tex] gives \log_{5} 125=3

Fractions. Use \frac to display fractions.
Example:
[tex]\frac{\pi^2}{6}[ /tex] gives \frac{\pi^2}{6}.

Roots. Use \sqrt. For instance,
[tex]\sqrt{a^3+b^4}[ /tex] produces \sqrt{a^2+b^2}

You can also get “other” roots:

[tex]\sqrt[4]{5}[ /tex] yields \sqrt[4]{5}.

Various examples
Code:

[tex] \frac{1}{2^n} \rightarrow 0[ /tex]

produces the graphic \frac{2}{3^n} \rightarrow 0

Code:

[tex]\int_a^b f(t) dt = 1[ /tex]

produces the graphic
\int_a^b f(t) dt = 1

Code:

[tex] \sum_{n=0}^{\infty} \frac{1}{n!} = e [ /tex]

produces the graphic
\sum_{n=0}^{\infty} \frac{1}{n!} = e

Plus or minus

[tex]\pm[ /tex]

produces the graphic
\pm

multiplication or dot product

[tex]a\cdot b[ /tex]

produces the graphic
a\cdot b

Equals sign and inequalities

To get an equals sign, you simply use the ordinary = sign.

[tex]2+3=5[ /tex]

produces the graphic
2+3=5

For 'not equal to', use \not=

[tex]2^4\not=2[ /tex]
produces the graphic
2^3\not=3

For less than signs, we use <, and for greater than signs, we use >

For 'less than or equal to' signs, we use \leq, and for 'greater than or equal to' signs we use \geq

[tex]x^2 \geq 0[ /tex]
produces the graphic
x^2 \geq 0

For spaces, use "\ ".

Sigma notation

To write sums, we use the \sum command.

[tex]\sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1) [ /tex]
produces the graphic
\sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1)

Differentiation

We use \frac{}{} to write dy/dx.

[tex]\frac{d}{dx} x^4 = 4x^3[ /tex]

produces the graphic
\frac{d}{dx} x^4 = 4x^3

For f'(x), simply write it out normally within TeX tags.

[tex]f'(x)[ /tex]

produces the graphic
f'(x)

Integration

For the integral sign, use the \int command.

[tex]\int 3x^2\ dx = x^3 + C[ /tex]
produces the graphic
\int 3x^2\ dx = x^3 + C

For definite integrals, use the commands for subscripts and superscripts.

[tex]\int^1_0 x\ dx =0.5[ /tex]

produces the graphic
\int^1_0 x\ dx =0.5

Modulus sign or absolute value

Use | for the modulus sign.

[tex]\sqrt{x^2} = |x|[ /tex]

produces the graphic
\sqrt{x^2} = |x|

Factorial

Use the exclamation mark like normal.

[tex]3! = 6[ /tex]
produces the graphic
3! = 6

n choose r

[tex]^n\mathrm{C}_r[ /tex]
produces the graphic
^n\mathrm{C}_r

Greek Letters

Write \x where x is the written form of the Greek letter (i.e. alpha, beta, gamma, ... , omega).

[tex]\pi[ /tex]
produces the graphic
\pi

[tex]\theta[ /tex]
produces the graphic
\theta

Infinity

To insert the infinity symbol, use \infty.

[tex]\infty[ /tex]
produces the graphic
\infty

Trigonometry

[tex]\cos \theta[ /tex]

produces the graphic
\cos \theta

[tex]\sin \theta[ /tex]

produces the graphic
\sin \theta

[tex]\tan \theta[ /tex]

produces the graphic
\tan \theta

[tex]\sec \theta[ /tex]

produces the graphic
\sec \theta

[tex]\mathrm{cosec} \theta[ /tex]

produces the graphic
\mathrm{cosec} \theta

[tex]\csc \theta[ /tex]
produces the graphic
\csc \theta

[tex]\cot \theta[ /tex]
produces the graphic
\cot \theta

[tex]\sin^2 \theta + \cos^2 \theta=1[ /tex]

produces the graphic
\sin^2 \theta + \cos^2 \theta=1

To write 'degrees', you could use the \circ command.

[tex]\cos 60^{\circ} = \frac{1}{2}[ /tex]

produces the graphic
\cos 60^{\circ} = \frac{1}{2}

Logarithms

[tex]\ln x^5 = 5 \ln x[ /tex]
produces the graphic
\ln x^5 = 5 \ln x

[tex]\log_{10} x^2 = 2 \log_{10} x[ /tex]
produces the graphic
\log_{10} x^2 = 2 \log_{10} x

Matrices

[tex]\begin{pmatrix} -2 & 6 & 7 \\2 & -5 & 1 \\1 & 2 & 3 \end{pmatrix}[ /tex]
produces the graphic
\begin{pmatrix} -2 & 6 & 7 \\2 & -5 & 1 \\1 & 2 & 3 \end{pmatrix}

Determinants

[tex]\begin{vmatrix} -2 & 6 & 7 \\2 & -5 & 1 \\1 & 2 & 3 \end{vmatrix}[ /tex]
produces the graphic
\begin{vmatrix} -2 & 6 & 7 \\2 & -5 & 1 \\1 & 2 & 3 \end{vmatrix}

vectors, simply write a matrix with only one column:

[tex]\begin{pmatrix} x \\ y \\ z \end{pmatrix}[ /tex]

produces the graphic
\begin{pmatrix} x \\ y \\ z \end{pmatrix}

[tex]\vec{a}[ /tex]
produces the graphic
\vec{a}

Limits

[tex]\displaystyle\lim_{x\to 0}[ /tex]
produces the graphic
\displaystyle\lim_{x\to 0}

Sets

[tex]\cup[ /tex]
produces the graphic
\cup

[tex]\cap[ /tex]
produces the graphic
\cap

[tex]\subset[ /tex]
produces the graphic
\subset

[tex]\subseteq[ /tex]
produces the graphic
\subseteq

[tex]\nsubseteq[ /tex]
produces the graphic
\nsubseteq

[tex]\in[ /tex]
produces the graphic
\in

[tex]\not\in [ /tex]
produces the graphic
\not\in

[tex]\mathbb{P}[ /tex]
produces the graphic
\mathbb{P}

[tex]\mathbb{N}[ /tex]
produces the graphic
\mathbb{N}

[tex]\mathbb{Z}[ /tex]
produces the graphic
\mathbb{Z}

[tex]\mathbb{I}[ /tex]
produces the graphic
\mathbb{I}

[tex]\mathbb{Q}[ /tex]
produces the graphic
\mathbb{Q}

[tex]\mathbb{R}[ /tex]
produces the graphic
\mathbb{R}

[tex]\mathbb{C}[ /tex]
produces the graphic
\mathbb{C}

\forall gives
produces the graphic
\forall

Logic Symbols

[tex]\forall[ /tex]
produces the graphic
\forall

[tex]\land[ /tex]
produces the graphic
\land

[tex]\lor[ /tex]
produces the graphic
\lor

[tex]\exists[ /tex]
produces the graphic
\exists

[tex]\neg[ /tex]
produces the graphic
\neg

[tex]\sim[ /tex]
produces the graphic
\sim